ELECTRIC CIRCUIT THEORY | SYLLABUS | IOE

ELECTRIC CIRCUIT THEORY

EE 501
Lecture  :   3
Year  :   II
Tutorial  :   1    Part   :   I
Practical  :   1.5

Course Objectives:
To continue work in Basic Electrical  Engineering  including the use of the Laplace Transform to determine the time and frequency domain responses of electric circuits.

1.  Network Analysis of AC circuit & dependent sources    (8 hours)
1.1  Mesh Analysis
1.2  Nodal Analysis
1.3  Series & parallel resonance in RLC circuits
1.3.1  Impedance and phase angle of series Resonant Circuit
1.3.2  Voltage and current in series resonant circuit
1.3.3  Band width of the RLC circuit.
1.3.4  High-Q and Low-Q circuits

2.  Initial Conditions:          (2 hours)
2.1  Characteristics of various network elements
2.2  Initial value of derivatives
2.3  Procedure for evaluating initial conditions
2.4  Initial condition in the case of R-L-C network



3.  Transient analysis in RLC circuit by direct solution   (10 hours)
3.1   Introduction
3.2   First order differential equation
3.3   Higher order homogeneous and non-homogeneous differential  equations
3.4   Particular integral by method of undetermined coefficients
3.5   Response of R-L circuit with
3.5.1   DC excitation
3.5.2  Exponential excitation
3.5.3  Sinusoidal excitation
3.6  Response of R-C circuit with
3.6.1  DC excitation
3.6.2  Exponential excitation
3.6.3  Sinusoidal excitation
3.7  Response of series R-L-C circuit with
3.7.1  DC excitation
3.7.2  Exponential excitation
3.7.3  Sinusoidal excitation
3.8  Response of parallel R-L-C circuit with DC excitation

4.  Transient analysis in RLC circuit by Laplace Transform   (8 hours)
4.1  Introduction
4.2  The Laplace Transformation
4.3  Important properties of Laplace transformation
4.4  Use of Partial Fraction expansion in analysis using Laplace Transformations
4.5  Heaviside's partial fraction expansion theorem
4.6  Response of R-L circuit with
4.6.1  DC excitation
4.6.2  Exponential excitation
4.6.3  Sinusoidal excitation
4.7  Response of R-C circuit with
4.7.1  DC excitation
4.7.2  Exponential excitation
4.7.3  Sinusoidal excitation
4.8  Response of series R-L-C circuit with
4.8.1  DC excitation
4.8.2  Exponential excitation
4.8.3  Sinusoidal excitation
4.9  Response of parallel R-L-C circuit with exponential excitation
4.10  Transfer functions Poles and Zeros of Networks            

5.  Frequency Response of Network  (6 hours)
5.1  Introduction
5.2  Magnitude and phase response
5.3  Bode diagrams
5.4  Band width of Series & parallel Resonance circuits
5.5  Basic concept of filters, high pass, low pass, band pass and band stop filters  


6.  Fourier Series and transform   (5 hours)
6.1  Basic concept of Fourier series and analysis
6.2  Evaluation of Fourier coefficients for periodic non-sinusoidal waveforms in electric networks
6.3  Introduction of Fourier transforms

7.  Two-port Parameter of Networks   (6 Hours)
7.1  Definition of two-port networks
7.2  Short circuit admittance parameters
7.3  Open circuits impedance parameters
7.4  Transmission Short circuit admittance parameters
7.5  Hybrid parameters
7.6  Relationship and transformations between sets of parameters
7.7  Application to filters
7.8  Applications to transmission lines
7.9  Interconnection of two-port network (Cascade, series, parallel)


Practical:
1.  Resonance in RLC series circuit
-  measurement of  resonant frequency

2.  Transient Response in first Order System passive circuits
-  measure step and impulse response of RL and RC circuit using oscilloscope
-  relate time response to analytical transfer functions calculations

3.  Transient Response in Second Order System passive circuits
-  measure  step and impulse response of RLC series and parallel circuits using oscilloscope
-  relate time  response to transfer functions and pole-zero configuration

4.  Frequency Response of first  order passive circuits
-  measure amplitude and phase response and plot bode diagrams for RL, RC and RLC circuits
-  relate Bode diagrams to transfer functions and pole zero configuration circuit

5.  Frequency Response of second order passive circuits
-  measure amplitude and phase response and plot bode diagrams for RL, RC and RLC circuits
-  relate Bode diagrams to transfer functions and pole zero configuration circuit
 
References:
1.  M. E. Van Valkenburg, "Network Analysis", third edition Prentice Hall, 2010.
2.  William H. Hyat. Jr. & Jack E. Kemmerly, "Engineering Circuits Analysis", Fourth edition, McGraw Hill International Editions, Electrical Engineering Series, 1987.
3.  Michel D. Cilletti, "Introduction to Circuit Analysis and Design", Holt, Hot Rinehart and Winston International Edition, New York, 1988.


Evaluation Scheme:
The questions will cover all the chapters of the syllabus. The evaluation scheme will be as indicated in the table below:
Chapters  Hours  Marks distribution*
Chapters
Hours
Marks distribution*
1
8
12
2
2
6
3
10
16
4
8
12
5
6
12
6
5
10
7
6
12
Total
45
80

* There could be a minor deviation in the marks distribution.

No comments:

Post a Comment